In yeast, loss of Hog1 leads to osmosensitivity of autophagy.

نویسندگان

  • Tanja Prick
  • Michael Thumm
  • Karl Köhrer
  • Dieter Häussinger
  • Stephan Vom Dahl
چکیده

In mammalian liver, proteolysis is regulated by the cellular hydration state in a microtubule- and p38(MAPK) (p38 mitogen-activated protein kinase)-dependent fashion. Osmosensing in liver cells towards proteolysis is achieved by activation of integrin receptors. The yeast orthologue of p38(MAPK) is Hog1 (high-osmolarity glycerol 1), which is involved in the hyperosmotic-response pathway. Since it is not known whether starvation-induced autophagy in yeast is osmosensitive and whether Hog1 is involved in this process, we performed fluorescence microscopy experiments. The hog1Delta cells exhibited a visible decrease of autophagy in hypo-osmotic and hyperosmotic nitrogen-starvation medium as compared with normo-osmolarity, as determined by GFP (green fluorescent protein)-Atg8 (autophagy-related 8) fluorescence. Western blot analysis of GFP-Atg8 degradation showed that WT (wild-type) cells maintained a stable autophagic activity over a broad osmolarity range, whereas hog1Delta cells showed an impaired autophagic actitivity during hypo- and hyper-osmotic stress. In [3H]leucine-pre-labelled yeast cells, the proteolysis rate was osmodependent only in hog1Delta cells. Neither maturation of pro-aminopeptidase I nor vitality was affected by osmotic stress in either yeast strain. In contrast, rapamycin-dependent autophagy, as measured by degradation of GFP-Atg8, did not significantly respond to hypo-osmotic or hyperosmotic stress in hog1Delta or WT cells. We conclude that Hog1 plays a role in the stabilization machinery of nitrogen-deprivation-induced autophagy in yeast cells during ambient osmolarity changes. This could be an analogy to the p38(MAPK) pathway in mammalian liver, where osmosensing towards p38(MAPK) is required for autophagy regulation by hypo-osmotic or amino-acid-induced cell swelling. A phenotypic difference is observed in rapamycin-induced autophagy, which does not seem to respond to extracellular osmolarity changes in hog1Delta cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osmostress-Induced Cell Volume Loss Delays Yeast Hog1 Signaling by Limiting Diffusion Processes and by Hog1-Specific Effects

Signal transmission progresses via a series of transient protein-protein interactions and protein movements, which require diffusion within a cell packed with different molecules. Yeast Hog1, the effector protein kinase of the High Osmolarity Glycerol pathway, translocates transiently from the cytosol to the nucleus during adaptation to high external osmolarity. We followed the dynamics of osmo...

متن کامل

Response to Hyperosmotic Stress

An appropriate response and adaptation to hyperosmolarity, i.e., an external osmolarity that is higher than the physiological range, can be a matter of life or death for all cells. It is especially important for free-living organisms such as the yeast Saccharomyces cerevisiae. When exposed to hyperosmotic stress, the yeast initiates a complex adaptive program that includes temporary arrest of c...

متن کامل

Expression of YAP4 in Saccharomyces cerevisiae under osmotic stress.

YAP4, a member of the yeast activator protein ( YAP ) gene family, is induced in response to osmotic shock in the yeast Saccharomyces cerevisiae. The null mutant displays mild and moderate growth sensitivity at 0.4 M and 0.8 M NaCl respectively, a fact that led us to analyse YAP4 mRNA levels in the hog1 (high osmolarity glycerol) mutant. The data obtained show a complete abolition of YAP4 gene ...

متن کامل

Regulating Global Sumoylation by a MAP Kinase Hog1 and Its Potential Role in Osmo-Tolerance in Yeast

Sumoylation, a post-translational protein modification by small ubiquitin-like modifier (SUMO), has been implicated in many stress responses. Here we analyzed the potential role of sumoylation in osmo-response in yeast. We find that osmotic stress induces rapid accumulation of sumoylated species in normal yeast cells. Interestingly, disruption of MAP kinase Hog1 leads to a much higher level of ...

متن کامل

Phosphorylation of Hsl1 by Hog1 leads to a G2 arrest essential for cell survival at high osmolarity.

Control of cell cycle progression by stress-activated protein kinases (SAPKs) is essential for cell adaptation to extracellular stimuli. Exposure of yeast to osmostress leads to activation of the Hog1 SAPK, which controls cell cycle at G1 by the targeting of Sic1. Here, we show that survival to osmostress also requires regulation of G2 progression. Activated Hog1 interacts and directly phosphor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 394 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2006